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Colorimetry

Here the concepts of colour measurement and computation shall
be introduced. The relationships which are used for measurement
and specification of colours constitute most important experimental
data on human colour vision, for the properties of the eye are the
natural basis of any colour measurement.

Basics of colour measurement

Light coming from somewhere, entering the eye and leading to the
sensation of colour, is called the colour stimulus. Besides colour,
we realize whether the object we look at is emitting light itself or
whether it remits light coming from another source, we see if it is
transparent or opaque, we see whether the surface is mat or glossy
and can discriminate different kinds of gloss, however, all the at-
tributes except colour and brightness are determined through the
combined action of impressions of neighbouring parts of the object
and its surroundings. Using some diaphragm to restrict the view
to a small part of the object which looks uniform, then colour and
brightness are the only attributes we can assign.

The light, i.e. the colour stimulus can be analyzed with physical
means. By a prism or a diffraction grating it can be decomposed into
parts of different wavelengths, and it can be measured how much
power is transported in different ranges of wavelengths.

The scale of wavelengths is divided into small intervals ∆λ. The
power (energy per unit time) which flows in such a wavelength-
interval from λ−∆λ/2 to λ+∆λ/2 into a certain solid angle (which
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may be given by the pupil of the observer’s eye) is called

ϕλ∆λ (1)

Knowing ϕλ for all visible wavelengths, thus for each interval
∆λ, this is a function of the wavelength λ, namely the spectral power
distribution or spectral function which contains all the physics of
the colour stimulus.

One finds that a doubling of ϕλ for all wavelengths increases the
brightness, but does not change the colour; if only the colour is of
interest, one therefore arbitrarily normalizes this function. Then the
functions of light sources of different radiative power can be com-
pared in the same plot. (For colour measurement, this is even more
facilitating, as only relative measurements are necessary which are
much easier than absolute ones.) Figure 1 shows the black-body
radiation functions for different temperatures as an example.

If light is decomposed by a prism, the different-wavelength com-
ponents can be superposed again, and this process restores its origi-
nal colour. Thus one may always think of a colour stimulus as a sum
of partial stimuli of different wavelength, and the spectral function
ϕλ gives the amount of each small wavelength-interval.

For the radiation of light sources, the spectral function is called
Sλ instead of ϕλ; Sλ is called the radiation function of the source.

The plausible assumption that ϕλ also determines the colour sen-
sation is easily disproved. Contrast to the surrounding, adaptation
to the colour and brightness of the illumination and not least the
processing of the optical data in the brain may induce notable dif-
ferences.

A good example for that is the abrupt change in the perceived
colour of the grey sky, when in the evening light is switched on in
a room. The action of contrast can be demonstrated withe the ex-
periment of “coloured shadows”. For this, one needs two different
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Figure 1: The black-body radiation functions for different tempera-
tures, showing how the radiated power depends on the wavelength.
By arbitrarily fixing the value at 560 nm to unity the curves fit into
one diagram. In fact, the radiated power increases with temperature
for all wavelengths; the absolute values for 2000 K are everywhere
below those for 12000 K.

sources of light, e.g. two spotlights, one with a red filter before it
and the second one without. An object held before the screen will
throw a double shadow. The one which is illuminated by the red
light looks red as expected, but the other one does not seem white,
but greenish-blue instead.
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This experiment, performed with a candle at twilight time, has
been described first by Otto v. Guericke in 1672 (Land 1977). E. H.
Land describes experiments which with increased apparatus clearly
show the variability of colour sensation for the same stimulus.

As colour sensations can not be measured (not yet), for the mea-
surement of colour one only asks whether two stimuli can be dis-
criminated or not and does not consider the sensations at all.

To eliminate any influence of the object’s shape and surround-
ings, and to make comparison easy, the colours to be compared are
presented as structureless “free” colours (“aperture colours”), each
filling half of the viewing field which appears like a shining open-
ing.

Particularly useful for the investigation of surface colours is the
“Maxwellian mode of observation”: looking at something with a
magnifying glas, the distances can be chosen such that the whole
aperture of the glass shows the same colour. For a colour which
does not appear to belong to a specific object, the separation of ob-
ject and illuminant colour which in most cases is performed inad-
vertently and with remarkable precision, is not possible any more.
Comparing colours presented in that way, the experiment is reduced
to the comparison of fluxes of light, of colour stimuli.

If two stimuli agree in their spectral composition, ϕ1,λ = ϕ2,λ,
they will appear equal to all observers under any conditions; this
is called an isomeric match. Colour stimuli may look equal also if
their spectral functions are different from each other; such a match
is called metameric. Different observers may disagree in their de-
termination of metameric matches.

To account for metamerism, i.e. the fact that different stimuli can
produce the same colour sensation, one introduces the valence V of
the stimulus with respect to the specific observer. If an observer
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perceives to stimuli as a match, we write

V1 = V2 , (2)

meaning that the two valences are equal, and nothing is implied for
the stimuli.

While normal-sighted observers agree fairly well in their judge-
ment of metameric equality, the equation above strictly holds only
for the specific observer.

Now consider an arrangement for colour measurement. Half of
the viewing field shows the colour to be measured, the other half
is illuminated by three projectors of adjustable intensities through
colour filters. By superposition (addition) of the three “measuring
primaries” with properly chosen weights, the valence of the other
half of the viewing field is to be reproduced. Experience shows that
with red, green, and blue primaries a wide gamut of colours can be
reproduced. This is a very important experimental result: all hues
can be obtained as a superposition of three primaries!

Such a match is written as

V = RR + GG + BB (3)

Valences are denoted by bold capital letters, the letters R, G, B (tris-
timulus values) give the amounts of the primaries R, G, B, mea-
sured in arbitrary units.

There are cases where a match can not be obtained with the
given arrangement corresponding to equation (3). As an example,
some highly saturated bluish green might not be obtainable, the su-
perposition of the three primaries always being less saturated, more
whitish. If the comparison serves the purpose of measurement, one
can manage this case by directing the red primary to the other half
of the viewing field and achieving a match according to

V + R̄R = GG + BB . (4)
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This can be written as

V = −R̄R + GG + BB , (5)

where negative amounts of primaries appear. Of course, for practi-
cal realizations, only the form of eq. (4) is possible, each side of the
equation corresponding to the valence of one half of the viewing
field which can be realized.

Admitting negative weights, equation (3) holds generally, pro-
vided that it is not possible to obtain one of the three primaries as a
superposition of the other two ones. This is Grassmann’s First Law,
which can be stated as follows: Given four colours, it is always pos-
sible to obtain one of them as a superposition of the other ones.

If there is a metameric match, an equal increase or decrease of
the luminance of both conserves the match, thus

V1 = V2 ⇒ aV1 = aV2 (6)

as long as only photopic vision is involved.
Equality of colour valences also persists if the same colour is

added to both:

V1 = V2 ⇒ V1 + U = V2 + U (7)

as well as

U1 = U2, V1 = V2 ⇒ U1 + V1 = U2 + V2 (8)

(Grassmann’s Third Law, H. Grassmann 1853)
Having obtained the tristimulus values R1, G1, B1 and R2, G2, B2

for V1 and V2, respectively

V1 = R1R + G1G + B1B
V2 = R2R + G2G + B2B (9)
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Figure 2: Representation of a colour valence F as a sum of three com-
ponents. R, G, B are unit vectors, RR etc. then are vectors in the
direction of the unit vectors, but with changed length. F is the sum
of RR, GG and BB. The figure to the right illustrates the vector ad-
dition. In these sketches, R, G, B are the weights of the components,
RR, GG and BB are the component vectors.

then the following holds:

V1 + V2 = (R1 + R2)R + (G1 + G2)G + (B1 + B2)B . (10)

From this we see that colour valences may be added using the
same rules as for the addition of vectors. Thus a valence may be
represented as a vector in the three-dimensional colour space as il-
lustrated in figure 2. There are only three linearly independent basis
vectors, just as in the physical space. Corresponding to the three-
dimensionality of the space of colour sensations the space of colour
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valences is three-dimensional.
Represented by vectors, two colours given by vectors in the same

direction differ only in their brightness, while the chromaticity is
given by the direction of the vector.

Until now, nothing has been said about the units used to specify
tristimulus values. They may be chosen arbitrarily; conventionally
they are chosen as follows: one unit of each of the red, green, and
blue (violet-blue) primaries added gives three units of white, where
white is assumed to be the valence of the equal-energy spectrum
ϕλ = const. Because of equation (6) the absolute value of the units
in unimportant, only the relative strengths are fixed in that way.

1
3

R +
1
3

G +
1
3

B = E (11)

The weight of a colour valence relevant for additive mixing is the
number of trichromatic units, and this is just the sum of the compo-
nents: two units of colour A plus three units of colour B yield five
units of the mixed colour C.

As in many cases the brightness is of less interest than chromatic-
ity, one often prefers to use a simpler two-dimensional representa-
tion of colours, plotting the unit plane R+G+ B = 1, the chromatic-
ity being given by the coordinates of the points where the valence
vectors intersect this plane. This is illustrated by figures 3.

From R, G, B one obtains the coordinates of the intersection
point:

r =
R

R + G + B
, g =

G
R + G + B

, b =
B

R + G + B
(12)

and as r + g + b = 1, only two of the coordinates have to be speci-
fied. For a point in the colour triangle one can read off the coordi-
nates from the distances of the point to the triangle’s sides, where
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Figure 3: Left: the colour triangle in colour space: the chromaticity
of the valence F drawn as an arrow is given by the point where the
arrow intersects the plane of the triangle. Right: the unit plane with
the intersection point (F) of the valence F.

the unit is given by gthe corresponding height of the triangle (e.g.
g = (F)V)/hG).

As the angles between axes in figure 3 are arbitrary, the colour
triangle may be drawn in arbitrary shape, equilateral or with a right
angle for convenience.

Adding two colours represented by points in the plane, the re-
sulting colour will lie on a line connecting the points, and the dis-
tances are inversely proportional to the amounts (in trichromatic
units) of the components as shown in figure 4.

The luminosities of typical primaries R, G, B are remarkably dif-
ferent. The standard primaries for colorimetric purposes are monochro-
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Figure 4: Additive mixing of two or more colours: if the trichromatic
units of colours F1, F2, . . . to be mixed are used as “masses”, the
chromaticity (M) of the result is given by the centre of mass.

matic light sources of wavelengths λR = 700 nm, λG = 546.1 nm,
λB = 435.8 nm. In this case one unit of red is seen as bright as
15 to 20 units of blue, while four to five units of red are needed to
match the brightness of one unit of green. However, to compare the
brightness of different colours is not easy, and so one has to inter-
pret the given luminosities of the standard sources as values taken
from the sensitivity function Vλ (figure 5) which has been defined
for the “standard observer” and represents the average obtained
from a large number of normal-sighted test persons.

For the wavelengths given above, the relative luminosities are

lR = 1, lG = 4.5907, lB = 0.0601 , (13)

and from this one obtains the luminosity L of some coloured light
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Figure 5: Relative luminous efficiency functions for daylight Vλ and
for night vision V′

λ.

of valence R, G, B as

κL = lRR + lGG + lBB (14)

Here κ is a factor which may be chosen such that L is obtained in
the appropriate units, e.g. cd/m2, candela per square meter.

The above equation relies on the assumption that luminosities
are additive (Abney’s law). This is, so to say, part of the definition
of luminosities.

It is further remarkable that the radiated power is also quite dif-
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ferent: for one trichromatic unit, one has

SR : SG : SB = 72, 0962 : 1, 3791 : 1 (15)
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Figure 6: The colour matching functions are the tristimulus values of
the monochromatic primaries: λR = 700 nm, λG = 546.1 nm, λB =
435.8 nm.
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Computation of chromaticity

The trichromatic weights (tristimulus values) of light of one single
wavelength (monochromatic light) are of particular importance: for
radiation of wavelength λ (stimulus qλ) one has r̄λ, ḡλ, b̄λ. These
weights measured for all values of λ (keeping the radiated power
fixed), the quantities r̄λ, ḡλ and b̄λ are functions of λ and are called
colour matching functions (figure 6). Having the colour matching
functions, the tristimulus values for any given colour stimulus ϕλ

can be computed.
To do this we divide the range of wavelengths of visible light

into small intervals ∆λ. If the intensity in a certain interval were
just one unit, the trichromatic coordinates for this part would be r̄λ,
ḡλ, b̄λ. However, the intensity is ϕλ∆λ and therefore we get

r̄λϕλ∆λ , ḡλϕλ∆λ , b̄λϕλ∆λ . (16)

Summing up all parts we obtain

R = ∑
λ

r̄λϕλ∆λ , G = ∑
λ

ḡλϕλ∆λ , B = ∑
λ

b̄λϕλ∆λ . (17)

The chromaticity coordinates rλ, gλ and bλ (which are the in-
tersection points of the spectral valences with the unit plane) are
obtained from equation (12) as

rλ =
r̄λ

r̄λ + ḡλ + b̄λ
, gλ =

ḡλ

r̄λ + ḡλ + b̄λ
, bλ =

b̄λ

r̄λ + ḡλ + b̄λ
.

(18)
The set of all these chromaticities forms the spectral locus, figure 7.

It is obvious that only the generalized form of equation (3) with
one or two negative weights is applicable when mixing spectral
colours from real primaries: one always has to desaturate the spec-
tral colour to obtain a match.
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Figure 7: Left: The valence vectors of monochromatic spectral stimuli form a kind
of cone in colour space, which forms the outer boundary of all possible colours.
Right: The locus of spectral colours in the chromaticity plane is the intersection
of the spectral cone with the unit plane. The connection of the long- and short-
wavelength ends is called the purple line. All possible chromaticities are within
the area delimited by the spectral curve and the purple line.

Additive mixing of the spectral colours of the end-points of the
spectral locus (deep red and blue-violet) yields colours on the purple-
line which connects the end-points. All chromaticity coordinates of
real stimuli are within the area surrounded by spectral locus and
purple line.

The chromaticity plane with the spectral locus gives another pos-
sibility to characterize a colour valence Q which has been intro-
duced by Hermann von Helmholtz and corresponds to the percep-
tional quantities hue and saturation (figure 8): One defines a “white
point” W and draws a straight line through the points (Q) and (W)
which intersects the spectral locus in the point (S).

There are two cases to distinguish: if (Q) lies between (W) and
(S), then Q can be obtained by adding W (white light) to monochro-
matic light of wavelength λS. Thus there is a wavelength λh = λS
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of the same hue.
If, in the other case, (W) lies between (Q) abd (S), then W (white)

can be obtained adding Q and light of wavelength λS′ . Now, λc =
λS′ is called “compensating wavelength”.

Saturation is defined in the first case as the by the ratio

pQ = (QW)/(SW) , (19)

in the other case
pQ = (QW)/(PW) . (20)

(W)

(Q)
(S)

λ h (P)
(Q)

(W)

(S’)

λc

Figure 8: Determination of Helmholtz’ parameters

Instead of compensating wavelength the term complementary
wavelength is also used. A pair of colours is called complementary,
if they can be superposed with suitable weights to yield white.

Choice of a new set of primaries

It is easy to go over from one set of primaries to another one. This
may be necessary for comparing different measurements. The geo-
metric visualisation of valences by vectors may be helpful.
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Let R′, G′, B′ be the new primaries which can be expressed in
terms of the old ones:

R′ = a11R + a12G + a13B (21)

and correspondingly for G′ and B′. To express the old primaries
by the new ones, a system of three equations with the three “un-
knowns” R, G, B has to be solved. The solution is

R = b11R′ + b21G′ + b31B′

. . . (22)

Thus a colour valence can be written as

Q = RR + GG + BB = R′R′ + G′G′ + B′B′

= R(b11R′ + b21G′ + b31B′)

+G(b12R′ + b22G′ + b32B′)

+B(b13R′ + b23G′ + b33B′)

and one can read off how the coordinates are to be transformed:

R′ = b11R + b12G + b13B
G′ = b21R + b22G + b23B (23)
B′ = b31R + b32G + b33B

If the new primaries have been chosen to satisfy

E =
1
3
(R′ + G′ + B′) (24)

according to the convention (11), this is the final result. If this is not
the case, the valence vectors have to be scaled to satisfy equation
(24).
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From equation (11) we obtain

E = 1
3 [(b11 + b12 + b13)R′ + (b21 + b22 + b23)G′

+(b31 + b32 + b33)B′] . (25)

Choosing
R′′ = (b11 + b12 + b13)R′ etc., (26)

the new units will satisfy the convention (11). Using equation (26)
we can correct the ansatz (21) so that, after the transformation, equa-
tion (24) is satisfied, i.e. b11 + b12 + b13 = 1 etc., which we assume
to be the case in the following.

Transforming the spectral colours, we obtain the colour match-
ing functions for the new primaries

r̄′λ = b11r̄λ + b12 ḡλ + b13b̄λ . (27)

etc. The transformation of the chromaticity coordinates r = R/(R+
G + B) etc. is easily obtained and shall not be given here.

The standard observer

As the three colour matching functions r̄λ, ḡλ, b̄λ allow to compute
the valence of any colour stimulus, they contain the complete in-
formation on colour perception of the particular observer. Colour
perception in the sense of ability to discriminate; we do not deal
with the subjective sensation of colour here.

The colour matching functions determined for different people
will, however, in general show differences, sometimes only slight,
sometimes marked ones. (This is due to differently strong yellow
pigmentation of the macula and also the lens of the eye, and also
differences in the visual pigments themselves.) Even for one ob-
server, the functions depend on the size (angular extension) of the
viewing field due to the yellow pigment in the macula.
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To provide a basis for colour measurement and specification, the
CIE (International Commission on Illumination, Commission Inter-
nationale de l’Éclairage, http://www.cie.co.at/index_ie.html) has
in 1931 introduced a fictitious standard observer, based on mea-
surements of Guild (1931/32) and Wright (1928/29) which have
been obtained with the monochromatic primaries of λR = 700 nm,
λG = 546.1 nm, λB = 435.8 nm and a viewing field of 2◦. These
colour matching functions are shown in figure 6. Later measure-
ments with improved technology (Stiles 1955) confirmed the older
results.

The simple possibility to transform tristimulus values induced
the CIE in 1931 to introduce special virtual primaries X, Y, and Z
and to define the tables of the corresponding colour matching func-
tions as standard for colorimetry.

The new primaries X, Y, Z have been chosen such that no neg-
ative tristimulus values X, Y, Z occur for any colour. In the unit
plane, the spectral locus is then entirely within the triangle (XYZ)
which naturally implies that the valences X, Y, Z can not be realized,
they only supply a convenient coordinate system for measurements
and graphical representation.

Equation (14) gives the luminance for any valence vector. If we
put L = 0, then

0 = lRR + lGG + lBB (28)

is the equation of a plane in colour space, the locus of all valences
with luminance zero. The primaries X and Z have been assumed to
lie in that plane, thus lX = lZ = 0, and the colour matching function
of the valence Y then must be proportional to the photopic lumi-
nous efficiency function Vλ, thus the coordinate Y proportional to
the luminosity.
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The requirements that

E =
1
3
(X + Y + Z) (29)

and that the XYZ-colour space encompasses the gamut of real colours
as closely as possible have been used to fix the valences X and Z and
thus to get the colour matching functions x̄λ, ȳλ, and z̄λ as trans-
forms of r̄λ, ḡλ, and b̄λ.

The unit plane in this space is the CIE 1931 chromaticity dia-
gram. As the shape of the triangle is arbitrary, the usual choice is
the most convenient one, namely rectangular isosceles, as shown in
figure 9.

To give an impression of the colours in the diagram, figure 10
shows the sRGB gamut which is de facto standard for the World
Wide Web in the internet, see http://www.color.org/sRGB.html.

The computation of tristimulus values from a colour stimulus ϕλ

with respect to X, Y, Z is done in complete analogy with equations
(17) using the colour matching functions x̄λ, ȳλ, and z̄λ, figure 11:

X = k ∑
λ

x̄λϕλ∆λ ,

Y = k ∑
λ

ȳλϕλ∆λ ,

Z = k ∑
λ

z̄λϕλ∆λ . (30)

As the functions x̄λ, ȳλ, z̄λ are arbitrarily normalized (such that the
maximum of ȳλ is equal to 1), we have written a proportionality
factor befor the summation sign.

At the wavelength λ = 555 nm (540 · 1012 Hz), the radiated
power of 1 W (Watt) corresponds to a luminous flux of 683 lm (lu-
men) by definition (since 1979). This number had been obtained
from the previous definition of the unit of luminous flux by means
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Figure 9: The CIE 1931 chromaticity diagram with the locus of spec-
tral colours and the purple line. The wavelengths of spectral colours
are given in nm.

of the black-body radiation and Planck’s formula. Thus, if one chooses
k = Km = 683 lm/W, then Y is the luminous flux in units of lumen,
if ϕλ is the radiant flux per unit of wavelength.

The chromaticity coordinates are given by

x =
X

X + Y + Z
; y =

Y
X + Y + Z

; z = 1 − x − y . (31)

Because of lx = lz = 0, ly = 1, the expression L = lxX + lyY + lzZ

20



460

480

500

520

540

560

580

600

620

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 x
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y
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Figure 11: The standard colour matching functions for 2 deg viewing field.

for the luminosity becomes

L = Y . (32)

The colour matching functions have been determined for a view-
ing field of 2◦ and hold up to an opening angle of approximately 4◦.
(The opening angle of 2◦ corresponds to a disc of 1 cm diameter
viewed at a distance of 29 cm.)
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For those cases where larger viewing fields are important, in
1964 matching functions and valences for 10◦ opening angle have
been defined, based on measurements of Stiles & Burch (1959) and
Speranskaya (1959). These quantities are given an index “10”, such
as X10, . . . x̄10 λ, X10 etc.

Surface colours and colour filters

In the foregoing discussion we always started from the colour stim-
ulus ϕλ, i.e. from the spectral composition of the light entering the
pupil. If ϕλ is due to the emission of a light bulb or another source of
light, or by a lamp-filter combination considered as a unit, then the
above results are immediately applicable. However, mostly we en-
counter colours in coloured surfaces. Correspondingly, colorimetry
is mainly applied to surface colours (or transparent filters) where
the colour stimulus of the remitted (or transmitted) light is deter-
mined not only by the properties of the surface (or filter) but also by
the illumination.

As the influence of illumination can not be separated from re-
mission (or transmission) in the colour measurements, one must
use illumination standards to achieve reproducible results. The CIE
has proposed three standard illuminants A, B, C in 1931, simulating
incandescent bulb light, direct sunlight at noon, and average day-
light with overcast sky. B and C were later replaced by D55 and
D65, given by their spectral power distribution in tabulated form.
D stands for daylight, and D65 was supposed to have colour tem-
perature of 6500 K (it is actually closer to 6504 K after a later re-
evaluation of Planck’s constant).

The standard illuminant A is realized by a 500 W tungsten-fi-
lament lamp driven at colour temperature 2856 K; B and C were
realized by A with appropriate filters.
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The quantity which is relevant for the colour of a surface is the
degree of light remission as a function of the wavelength. An ideal
white mat surface remits 100 % of the incident light, independently
of the wavelength. The remission factor gives the ratio of light re-
mitted compared to that of ideal white:

βλ = L/Lwhite (33)

when illuminated with light of wavelength λ.
What in the following will be said on surface colours holds for

colour filters, if the remission βλ is replaced by the transmission τλ.
Let the illuminaton be described by the spectral power distri-

bution Sλ, which means that Sλ∆λ is proportional to the radiated
power in the wavelength-interval from λ − ∆λ/2 to λ + ∆λ/2. As
the absolute value is not relevant for the present purpose, Sλ is usu-
ally arbitrarily normalized. If the coloured surface in question is
characterized by the remittance βλ, the energy flux reaching the ob-
server is proportional to

ϕλ∆λ = βλ · Sλ∆λ (34)

for all wavelengths. From this one gets the tristimulus values

X = k ∑
λ

x̄λ · βλSλ∆λ

Y = k ∑
λ

ȳλ · βλSλ∆λ (35)

Z = k ∑
λ

z̄λ · βλSλ∆λ

where the constant k usually is chosen such that for an ideal white
surface one would obtain the luminance Y of 1 or 100 (percent).

k =
100

∑λ ȳλ · Sλ∆λ
. (36)

24



Thus Y represents the luminance compared to ideal white (in
percent), and this quantity is independent of the illumination level.
This is important for surface colours: contrary to coloured light,
where colour and brightness are perceived ad separate quantities,
in the case of surfaces the luminance (as compared to white) affects
the colour sensation: There is no brown light – rather a dim orange
one, but a surface with the same chromaticity as orange but smaller
luminosity is seen brown, not dark orange.

The fact that brown and orange or olive-green and yellow have
the same chromaticities can nicely be demonstrated using two pro-
jectors. First in a darkened room one projects light with moder-
ate intensity through an orange (or yellow) filter onto a screen; the
colour seen is orange (or yellow). Then with high intensity a white
ring is projected: immediately the area enclosed is seen brown or
olive, respectively.

When viewing object colours, the illumination level already sup-
plies a reference standard so that the sensation “brown” is indepen-
dent of the presence of adjacent white areas.

As the valences of object colours depend on the illumination, a
metameric match may get lost if the illumination changes. What is
a match with one illuminant may look quite different when viewed
with another one, and the difference is the more pronounced, the
larger the differences in the remission curves are.

If a remission curve is very “irregular”, the dependence of the
colour on illumination may be so strong that the change in per-
ceived colour surprises. A famous example is the precious gem-
stone alexandrite which at candlelight looks red, at daylight blue.

A grey area printed with cyan, magenta, and yellow ink may at
incandescent lamp light look more reddish than another one printed
with black ink only, while at daylight it appears bluish-greenish as
compared with the neutral grey.
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Colour solids

For object colours it is, as has been discussed, it is the relative lumi-
nance as compared to white which is decisive for the colour sensa-
tion, and not the absolute luminance which depends on the illumi-
nation. Therefore, contrary to light stimuli where the valences form
an open cone, the space of object colours is bounded and forms a
colour solid, figure 12. The valences of the most saturated colours
seen in everyday life are somewhat inside of the surface of the solid,
which is formed by the so-called “optimal colours”. Optimal colours
are those which for a given chromaticity (x, y, z) have the high-
est theoretically possible luminance Y, or, given the luminance, the
highest possible saturation. It can be shown that the remission of
optimal colours can only have the values zero or one, with no more
than two discontinuities.

Colour systems, sample collections

There have been numerous attempts to design colour solids for ob-
ject colours and to produce charts for the assessment of colour. Here
only two examples shall be briefly discussed, Ostwald’s colour solid
and Munsell’s system. Earlier attempts which are only of historical
interest may be found in the internet, e.g
http://www.colorsystem.com

Wilhelm Ostwald (1923) characterized colours by a hue number
N and the fraction of maximally saturated colour (“full colour”) F,
and the white- and black-content W and K. The quantities F, W, K
can be obtained from the sector sizes of the colour top as discussed
in the introduction to colour science (this site). As F + W + K = 1,
three coordinates are needed to specify a colour, e.g. N, W, and K.

The colour solid of the American painter A.H. Munsell (Mun-
sell 1915 and later) is based on the order of valences by hue, value
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Figure 12: The solid of object colours inside of the cone spanned by the spectral
valences. “Daylight” D65 has been assumed as illuminant, therefore the highest
point (with Y = 1) has the chromaticity of D65. The solid is represented by cross
sections of equal valence units.

(=brightness) and chroma (=saturation, intensity). Perceptionally
equidistant steps have been aimed at. In this colour system, the
value numbers account for the larger brightness of yellow as com-
pared to blue. A remarkable fact is that the lines of equal hue, when
plotted in the chromaticity diagram, are not straight lines in general:
samples of equal hue, but different chroma do not correspond to a
fixed wavelength. Samples of equal hue, but different value also
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have not the same chromaticity in general. This is the manifesta-
tion of two well known effects: The subjective change in hue when
a colour is mixed with white (optical or with pigments) is known
as Abney effect, while the apparent change in hue with changing
luminosity is the Bezold-Bruecke shift.

In fact the chromaticity coordinates of the original samples of
Munsell showed slight irregularities. The lines have been smoothed
by improved selection of samples.

The Ostwald system has been replaced by the DIN colour charts
(DIN 6164) which use empirical rules for lightness and saturation
to achieve perceptionally equal steps. In contrast to the Munsell
system, lines of equal hue are straight lines in the chromaticity dia-
gram; the subjective changes of hue due to the Abney and Bezold-
Bruecke effects are tolerated to simplify the relation with chromatic-
ity.

CIE-xyY-solid

Instead of constructing the colour solid in the XYZ-valence space
(figure 12) it is more convenient to use the x, y, Y-space (Rösch 1928,
Mac Adam 1935).

However, in both variants of the colour solid, equal distances do
not correspond to equal perceptional differences, as may be seen in
figure 10 which may be interpreted as view on top of that part of
the CIE-xyY-solid which can be rendered on the screen, and figure
14 which is a horizontal section through this at constant Y.

Colour distances, CIE-L*u’v’, CIE-L*u*v*, . . .

The chromaticity coordinates x, y depend on the primaries X, Y, Z
which have been chosen more or less arbitrarily. The chromaticity
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diagram depends on this choice; however, another choice will only
lead to a “perspectivic” distortion of the diagram, accompanied by
a redefinition of units such that the simple rules for computing ad-
ditive mixing remain valid.

With respect to colour differences, the chromaticity chart is not
quite satisfactory: the distances in the chart are not nearly propor-
tional to perceived differences. No wonder, any perceptions beyond
colour matching have until now been deliberately excluded. If now
colour differences are compared, this is beyond the initial restric-
tion.

A measure for the perceived distance may be obtained from the
scattering of data points when colour matching is repeated many
times. Such experiments have been performed by Mac Adam (1942).
Other approaches are due to Schrödinger and to Stiles (1946).

One may chose another plane in colour space instead of the unit
plane (cf. figure 3) to represent chromaticities in order to reach a
better correspondence of distances to perceived colour differences.
In this way the 1960 CIE-UCS diagram (UCS: uniform chromaticity
scale) (also called 1960 CIE u,v-diagram) has been obtained. The
new chromaticity coordinates are obtained from x and y as follows:

u =
4x

−2x + 12y + 3
, v =

6y
−2x + 12y + 3

, (37)

and the reverse transformation is

x =
3u

2u − 8v + 4
, y =

2v
2u − 8v + 4

. (38)

The transition to the UCS-diagram is achieved by a transforma-
tion of the same kind as the transition from one set of primary va-
lences to another one.

The UCS-diagram has been replaced by the 1976 CIE-L*,u’,v’ di-
agram (L* stands for the nonlinear luminosity which shall be treated
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later):

u′ =
4x

−2x + 12y + 3
, v′ =

9y
−2x + 12y + 3

. (39)

Perceptionally equidistant colour spaces, where equal distances
imply equal perceived differences, are strictly impossible. But for-
tunately there are colour spaces which are closer to this ideal case
than CIE-XYZ (figure 12) or CIE-xyY.

The graph shown in figure 13 satisfies the requirement quite
well, as long as luminosity is constant. If also the steps in luminos-
ity should be perceptionally equidistant, then Y must not be used,
since with increasing luminosity equal steps of Y appear smaller
and smaller. The Weber-Fechner law accounts for this but does not
fully describe the facts, as the adaptation to the general illumination
level is not accounted for.

Supposing a low illumination level (as is usually the case when
watching TV), the CIE in 1976 proposed to approximate the con-
nection of the perceived brightness L∗ with the luminosity Y by a
power law

L∗ =

{
116(Y/Yn)1/3 − 16 if Y/Yn > 0.008856
903.3 Y/Yn otherwise ,

(40)

and to obtain from the coordinates u′, v′ introduced above the new
coordinates u∗, v∗ according to

u∗ = 13L∗(u′ − u′
n) ,

v∗ = 13L∗(v′ − v′n) ,

where Yn, u′
n, v′n are the corresponding chromaticity coordinates of

the reference white-point of the screen or of the light source, respec-
tively. In these 1976 CIE-L*u*v* coordinates the colour space comed
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quite close to perceptional uniformity. The figures 15 and 16 show
the part of the colour solid which can be rendered with the sRGB
primaries, represented by a stack of planes of constant brightness
L∗.

Figure 13: The CIE u’v’ uniform chromaticity diagram (to be com-
pared with figure 14)
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Figure 14: The x-y-chromaticity diagram showing a plane of con-
stant luminosity, the same as figure 13.

One more parametrization of the colour space with somewhat
simpler transformation formulas has been proposed in the same
year, the 1976 CIE L*a*b* space.

The brightness L∗ is the same as before; the other two coordi-
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Figure 15: The colours which can be rendered by the sRGB primaries
in CIE-L*u*v* space.
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Figure 16: The previous image, seen from the back side (dark side of
the colour solid in CIE-L*u*v* space).
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nates a∗ (“red minus green”) and b∗ (“yellow minus blue”) are ob-
tained as follows:

a∗ = 500[ f (X/Xn)− f (Y/Yn)]
b∗ = 200[ f (Y/Yn)− f (Z/Zn)] ,

with

f (t) =
{

t1/3 if t > 0.008856
7.787t + 16/116 else

(41)

and Xn, Yn, Zn are the tristimulus coordinates of the white-point.
The back-transformation is – normalizing L∗

max = 100 (for Y/Yn >
0.008856)

P = (L∗ + 16)/116 ,

X = Xn(P + a∗/500)3 , Y = YnP3 , Z = Zn(P − b∗/200)3 .
(42)

Note that vector addition to obtain the result of additive colour
mixing which is possible in the CIE-XYZ space, is not possible in
the L*u’v’-, L*u*v*- and L*a*b* spaces because of the nonlinearity of
the transformations. For the computation of colour mixing, one has
to go back to XYZ.

Because of its approximate perceptional uniformity, the distance
in the CIE L*a*b* space

∆12 =
√
(L∗

1 − L∗
2)

2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2 (43)

is used to specify colour tolerances.
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